Power Law Scaling of the Top Lyapunov Exponent of a Product of Random Matrices

K. Ravishankar ${ }^{1}$

Received May 12, 1988; revision received August 23, 1988

Abstract

A sequence of i.i.d. matrix-valued random variables $\left\{X_{n}\right\} \cdot X_{n}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}{ }^{i}\right)$ with probability p and $X_{n}=\left(\begin{array}{cc}1+a(\varepsilon) \\ c(\varepsilon) & b(\epsilon) \\ 1+a(t)\end{array}\right)$ with probability $1-p$ is considered. Let $a(\varepsilon)=a_{0} \varepsilon+o(\varepsilon), c(\varepsilon)=c_{0} \varepsilon+o(\varepsilon) \lim _{\varepsilon \rightarrow 0} b(\varepsilon)=0, a_{0}, c_{0}, \varepsilon>0$, and $b(\varepsilon)>0$ for all $\varepsilon>0$. It is shown show that the top Lyapunov exponent of the matrix product $X_{n} X_{n-1} \cdots X_{1}, \lambda=\lim _{n \rightarrow \infty}(1 / n)|n| X_{n} X_{n-1} \cdots X_{i} \|$ satisfies a power law with an exponent $1 / 2$. That is, $\lim _{\varepsilon \rightarrow 0}(\ln \lambda / \ln \varepsilon)=1 / 2$.

KEY WORDS: Lyapunov exponent; product of random matrices; Markov chain.

1. INTRODUCTION

Consider a sequence $\left\{X_{n}\right\}$ of matrix-valued, independent, identically distributed random variables, where

$$
X_{n}=\left(\begin{array}{ll}
1 & d \\
0 & 1
\end{array}\right)=A \quad \text { with probability } p
$$

and

$$
X_{n}=\left(\begin{array}{cc}
1+a(\varepsilon) & b(\varepsilon) \\
c(\varepsilon) & 1+a(\varepsilon)
\end{array}\right)=B \quad \text { with probability } 1-p
$$

A and B are real, positive matrices and

$$
\lim _{\varepsilon \rightarrow 0} a(\varepsilon)=\lim _{\varepsilon \rightarrow 0} c(\varepsilon)=0, \quad a(\varepsilon), c(\varepsilon) \geqslant 0 \cdot \lim _{\varepsilon \rightarrow 0} b(\varepsilon)=b_{0}>0
$$

[^0]A is a parabolic matrix, while B is a hyperbolic matrix, which is a perturbation of the parabolic matrix
\[

\left($$
\begin{array}{cc}
1 & b_{0} \\
0 & 1
\end{array}
$$\right)
\]

It is easy to see that B has two distinct eigenvalues μ_{1}, μ_{2}, while A has a multiple eigenvalue $\mu=1$. Let

$$
\lambda(\varepsilon)=\lim _{n \rightarrow \infty} \frac{1}{n} \ln \left\|X_{n} X_{n-1} \cdots X_{1}\right\|
$$

be the top Lyapunov exponent of the random matrix product. Existence of λ is guaranteed by well-known theorems about products of random matrices. ${ }^{(1)}$ It is easily seen that $\lambda(0)=0$. In this paper I show that

$$
\lim _{\varepsilon \rightarrow 0} \frac{\ln \lambda(\varepsilon)}{\ln \varepsilon}=\frac{1}{2}
$$

Random matrix products where matrices in the product are perturbations of a parabolic matrix arise in the study of planar billiard problems. ${ }^{(2)} \mathrm{A}$ power law scaling of the top Lyapunov exponent with an exponent of $1 / 2$ was proved for a large class of planar billiards in a recent paper by Wojtkowski. ${ }^{(3)}$ Random matrix products of the type considered in the present paper (where the distribution of X_{1} is supported on an uncountable set of parabolic and hyperbolic matrices) arose in the study of a billiard in a gravitational field. A power law scaling of the top Lyapunov exponent with an exponent of $1 / 2$ was established numerically by Lehtihet and Miller. ${ }^{(4)}$ Miller and Ravishankar ${ }^{(5)}$ considered a stochastic model for the billiard in a gravitational field and showed that λ scales like $\varepsilon^{\alpha}, 1 / 2 \leqslant \alpha \leqslant 1$.

I prove the scaling of the Lyapunov exponent by establishing upper and lower bounds which scale like $\varepsilon^{1 / 2}$. A lower bound which scales like $\varepsilon^{1 / 2}$ can be obtained by using general results of Wojtkowski for products of random matrices. ${ }^{(5)}$ I establish the lower bound using an elementary probabilistic argument, which I feel makes the result transparent for this particular problem. Results obtained in this paper can be easily extended to the case $d=d(\varepsilon), \lim _{\varepsilon \rightarrow 0} d(\varepsilon)>0$. One can further extend the result to the case when $d<0$ and $b, c<0$ by making the coordinate transformation $x^{\prime}=x, y^{\prime}=-y$.

2. SOME PROPERTIES OF A AND B

Assume that $a(\varepsilon)=a_{0} \varepsilon+o(\varepsilon)$ and $c(\varepsilon)=c_{0} \varepsilon+o(\varepsilon), \varepsilon>0$. [If one assumes $a \sim a_{0} \varepsilon^{\alpha}$ and $c \sim c_{0} \varepsilon^{\gamma}$, then the arguments given here will give a
scaling exponent of $\min (\alpha, \gamma / 2)$.] It is easy to see that $\mu_{1}=(1+a)-(b c)^{1 / 2}$ and $\mu_{2}=(1+a)+(b c)^{1 / 2}$ and the corresponding eigenvectors have slopes $-(c / b)^{1 / 2}$ and $(c / b)^{1 / 2}$, respectively. The action of B on a ray in $\mathbb{R}^{2}(a$ straight line through the origin) is to rotate it toward the expanding direction (eigendirection of μ_{2}) A rotates a ray in \mathbb{R}^{2} in the clockwise direction The X axis is the eigendirection of A. From these observations it follows that the cone formed by the expanding direction and the X axis is left invariant by the actions of either matrix. Also note that as $\varepsilon \rightarrow 0$ the invariant cone collapes onto the X axis. Let us denote the slope of the expanding direction $(c / b)^{1 / 2}$ by m_{E}. Let σ be the invariant cone. Define a set of conical subsets of σ as follows:

$$
\sigma_{K}=\left\{V \in \mathbb{R}^{2} \left\lvert\, \frac{m_{E}}{K} \leqslant\right. \text { slope of } V \leqslant m_{E}\right\}
$$

For a 2×2 matrix X define the norm $\|\cdot\|_{\sigma_{K}}$ as

$$
\|X\|_{\sigma_{K}}=\operatorname{Sup}\left\{|X V|: V \in \sigma_{K},|V|=1\right\}
$$

where $|V|$ is the Euclidean norm of V. It is easy to see that there exist constants $K_{1}, K_{2}>0$ such that

$$
\begin{aligned}
& \left.\|A\|_{\sigma}=\operatorname{Sup}\{|A V|: V \in \sigma,|V|=1\},|V|=1\right\} \leqslant 1+K_{1} \varepsilon^{1 / 2} \\
& \|B\|_{\sigma} \leqslant 1+K_{2} \varepsilon^{1 / 2}
\end{aligned}
$$

With a little more effort one can also establish that for every $K \in N$, there exist positive constants $l_{1}(K)$ and $l_{2}(K)$ such that

$$
\begin{equation*}
\|A\|_{\sigma_{K}} \geqslant 1+l_{1} \varepsilon^{1 / 2}, \quad\|B\|_{\sigma_{K}} \geqslant 1+l_{2} \varepsilon^{1 / 2} \tag{1}
\end{equation*}
$$

(we assume $\varepsilon<1$).

2.1. Upper Bound

We observe that for a.e. w (sequence of X_{i}) there exists an $n(w) \in N$ such that

$$
\begin{equation*}
\left(X_{n} X_{n-1} \cdots X_{1}\right) V \in \sigma \quad \text { for all } \quad V \in \mathbb{R}^{2} \tag{2}
\end{equation*}
$$

From this it follows that

$$
\begin{aligned}
\lambda & =\lim _{N \rightarrow \infty} \frac{1}{N} \ln \left\|X_{N} X_{N-1} \cdots X_{1}\right\| \\
& \leqslant \lim _{N \rightarrow \infty} \frac{1}{N} \ln \left\|X_{N} \cdots X_{n}\right\| \\
& \leqslant p \ln \|A\|_{\sigma} \mu(1-p) \ln \|B\|_{\sigma}
\end{aligned}
$$

for a.e. w. Therefore

$$
\begin{align*}
\lambda & \leqslant p \ln \left(1+K_{1} \varepsilon^{1 / 2}\right)+(1-p) \ln \left(1+K_{2} \varepsilon^{1 / 2}\right) \\
& \leqslant p K_{1} \varepsilon^{1 / 2}+(1-p) K_{2} \varepsilon^{1 / 2}=C_{1} \varepsilon^{1 / 2} \tag{3}
\end{align*}
$$

2.2. Lower Bound

From (1) it is clear that if a vector spends a positive fraction of time (asymptotically) in some cone σ_{K}, then the dilation of the vector as it moves under the action of $\left\{X_{n}\right\}$ is large enough to obtain a lower bound of the form $C_{2} \varepsilon^{1 / 2}$. Note that as a vector gets close to the X axis, the dilations produced by both the A and B matrixes become smaller. Thus, the idea is to show that for a.e. w, the orbit of a vector stays away from the X axis.

Consider the random variables $\left\{Z_{k}\right\}$ defined as follows: $Z_{0}=V_{0}$, where V_{0} is some vector in S^{1} (the unit circle),

$$
Z_{k}=\frac{X_{k} Z_{k-1}}{\left|X_{k} Z_{k-1}\right|}, \quad k=1,2,3, \ldots
$$

Clearly, Z_{k} is an S^{1}-valued random variable. Independence of $\left\{X_{k}\right\}$ implies that $\left\{Z_{k}\right\}$ is a Markov sequence. Let v be a stationary initial measure for $\left\{Z_{k}\right\}$. A theorem of Furstenberg and Kifer ${ }^{(6)}$ gives the following formula for λ :

$$
\lambda=\operatorname{Sup}_{v} \int d v(z)[p \ln |Z z|+(1-p) \ln |B z|]
$$

where the Sup is over the set of stationary initial distributions of $\left\{Z_{k}\right\}$. Let v be a stationary distribution of $\left\{Z_{k}\right\}$ supported on σ. Then

$$
\begin{equation*}
\lambda \geqslant \int_{\sigma} d v(z)[p \ln |A z|+(1-p) \ln |B z|] \tag{4}
\end{equation*}
$$

From (1) it is clear that if we show that for some $k \in I N, \lim _{\varepsilon \rightarrow 0} v\left(\sigma_{k}\right)>0$ (both v and σ_{k} depend on ε), we can obtain the desired lower bound.

We coordinatize $S^{1} \cap \sigma$ by using the slope $m(V)$ of a vector V as its coordinate,

$$
\begin{aligned}
& m(A V)=\frac{m(V)}{1+d m(V)}, \quad m(B V)=\frac{c+(1+a) m(V)}{(1+a)+b m(V)} \\
& \Delta_{A}=m(A V)-m(V)=-m_{E}^{2} \frac{d\left(m / m_{E}\right)^{2}}{1+m_{E} d\left(m / m_{E}\right)} \\
& \Delta_{B}=m(B V)-m(V)=m_{E}^{2} \frac{1-\left(m / m_{E}\right)^{2}}{(1+a) / b+m_{E}\left(m / m_{E}\right)}
\end{aligned}
$$

where $m=m(v)$.

Thus we obtain a Markov chain $\left\{Q_{n}\right\}$ on $\left[0, m_{E}\right]$ where $A_{A}(m)$ and $\Delta_{B}(m)$ are the step sizes to the left and right starting from m. Define a Markov chain $\left\{Y_{n}\right\}$ on $[0,1]$ by scaling $\left\{Q_{n}\right\}$ as follows:

$$
Y_{n}=Q_{n} / m_{E}
$$

Recall that $m_{E}=(c / b)^{1 / 2}=M(\varepsilon) \varepsilon^{1 / 2}$, where $\lim _{\varepsilon \rightarrow 0} M(\varepsilon)=\left(c_{0} / b_{0}\right)^{1 / 2}>0$. Let

$$
L(\varepsilon, X)=\frac{d M(\varepsilon)}{1+d M(\varepsilon) X \varepsilon^{1 / 2}}, \quad R(\varepsilon, X)=\frac{M(\varepsilon)}{[1+a(\varepsilon)] / b(\varepsilon)+M(\varepsilon) X \varepsilon^{1 / 2}}
$$

The transition probability for $\left\{Y_{n}\right\}, P(X, \cdot)$, can be written as

$$
P(X, \cdot)=p \delta_{X,\left(X-L X^{2} \varepsilon^{1 / 2}\right)}+(1-p) \delta_{X,\left(X+R\left(1-X^{2}\right) \varepsilon^{1 / 2}\right)}
$$

Let π be a stationary initial distribution for $\left\{Y_{n}\right\}$. If f is a bounded, measurable function on $[0,1]$, then $\int d \pi(x)(P f-f)(x)=0$, where

$$
P f(x)=\int P(x, d y) f(y)
$$

Let $f(x)=x$; then

$$
\int d \pi(x)[P f(x)-f(x)]=\varepsilon^{1 / 2} \int d \pi(x)\left\{(1-p) R-[(1-p) R+p L] x^{2}\right\}
$$

Let

$$
g(x)=\varepsilon^{1 / 2}\left\{(1-p) R(\varepsilon, x)-[(1-p) R(\varepsilon, x)+p L(\varepsilon, x)] x^{2}\right\}
$$

A simple computation shows that if $M(\varepsilon) \varepsilon<4$, then $g^{\prime}(x)<0$, for all $x \in[0,1]$. Moreover,

$$
g(0)>0 \quad \text { and } \quad g(1)<0
$$

Let $\bar{x}(\varepsilon)$ be the point in $[0,1]$ where $g(x, \varepsilon)$ crosses the X axis, $\lim _{\varepsilon \rightarrow 0} \bar{x}(\varepsilon)=x_{0}=\left\{(1-p) M_{0} b_{0} /\left[(1-p) M_{0} b_{0}+p d_{0} M_{0}\right]\right\}^{1 / 2}$

$$
g\left(\frac{\bar{x}}{2}\right) \pi\left(\left[0, \frac{\bar{x}}{2}\right]\right) \leqslant-\int_{\bar{x} / 2}^{1} g(x) d \pi \leqslant|g(1)| \pi\left(\left[\frac{\bar{x}}{2}, 1\right]\right)
$$

Therefore

$$
\begin{equation*}
\pi\left(\left[\frac{\bar{x}}{2}, 1\right]\right) \geqslant \frac{g(\bar{x} / 2)}{|g(1)|+g(\bar{x} / 2)}>0 \tag{5}
\end{equation*}
$$

From the definition of Y_{n}, it is clear that there exists a stationary initial measure v for $\left\{Z_{n}\right\}$ such that

$$
v\left(\left\{V \in \sigma \left\lvert\, \frac{\bar{x}}{2} m_{E} \leqslant m(V) \leqslant m_{E}\right.\right\}\right)=\pi\left(\left[\frac{\bar{x}}{2}, 1\right]\right)>0
$$

Since $\lim _{\varepsilon \rightarrow 0} \bar{x}=x_{0}>0, \lim _{\varepsilon \rightarrow 0}(\bar{x} / 2)>1 / K$ for some $K \in I N$. Thus, we have proved

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} v\left(\sigma_{K}\right)>\frac{g_{0}\left(x_{0} / 2\right)}{p d M_{0}+g_{0}\left(x_{0} / 2\right)}>0 \tag{6}
\end{equation*}
$$

Theorem. There exists a constant $C_{2}>0$ such that $\lambda \geqslant C_{2} \varepsilon^{1 / 2}$ for small enough ε.

Proof. From (4) we have

$$
\begin{aligned}
\lambda & \geqslant \int_{\sigma} d v(z)[p \ln |A z|+(1-p) \ln |B z|] \\
& \geqslant \int_{\sigma_{K}} d v(z)[p \ln |A z|+(1-p) \ln |B z|]
\end{aligned}
$$

where σ_{K} is as defined in (6). From (1) we have
$>\int_{\sigma_{K}} d v(z)\left[p \ln \left(1+l_{1} \varepsilon^{1 / 2}\right)+(1-p) \ln \left(1+l_{2} \varepsilon^{1 / 2}\right)\right]>C_{2} \varepsilon^{1 / 2}$ for small enough ε
We have thus proved

$$
\lim _{\varepsilon \rightarrow 0} \frac{\ln \lambda(\varepsilon)}{\ln \varepsilon}=\frac{1}{2}
$$

3. CONCLUDING REMARKS

There are two other interesting hyperbolic perturbations of a parabolic matrix:

1. If one assumes that $b(\varepsilon) \rightarrow 0$ and $c(\varepsilon) \rightarrow c_{0}>0$, then the B matrix limits to a lower triangular matrix. In this case $\lim _{\varepsilon \rightarrow 0} \lambda>0$.
2. If one assumes $b(\varepsilon)=b_{0} \varepsilon+o(\varepsilon), \quad c(\varepsilon)=c_{0} \varepsilon+o(\varepsilon), \quad$ and $b_{0} \mid c_{0} \rightarrow \gamma>0$, then by methods used in this paper one can show that λ scales like ε as $\varepsilon \rightarrow 0$.

ACKNOWLEDGMENTS

I thank Bruce Miller for introducing me to the billiard problem, which led to this problem. I am grateful to the referees for their comments.

REFERENCES

1. V. I. Oseledec, Trans. Moscow Math. Soc. 19:179 (1968).
2. G. Benettin, Physica D 13:211 (1984).
3. M. Wojtkowski, Commun. Math. Phys. 105:391 (1986).
4. H. E. Lehtihet and B. N. Miller, Physica D 21:92 (1986).
5. B. N. Miller and K. Ravishankar, J. Stat. Phys., to appear.
6. M. Wojtkowski, in Random Matrices and Their Applications, J. E. Cohen, H. Kesten, and C. Newman, eds. (American Mathematical Society, Providence, Rhode Island, 1986).
7. H. Furstenberg and Y. Kifer, Isr. J. Math. $46: 12$ (1983).

[^0]: ${ }^{1}$ Department of Mathematics and Computer Science, State University of New York, New Paltz, New York 12561.

