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A sequence of i.i.d, matrix-valued random variables {X.} _ ~d �9 X. - (0 1) with 
probability p and X -t~+o(,) b(~) ~ with probability 1 - p  is considered. Let n --  ~, c(~) I +a(~)/  

a(e)=ao~ + O(e), c(e)=Coe + O(e) lim~.ob(~)=O, ao, Co, ~>0, and b(~)>0 for 
all e>0. It is shown show that the top Lyapunov exponent of the matrix 
product X.X. z""  Xl, 2 = lim. ~ ~ (l/n) I n II JC X~_ t ' "  J~ I1 satisfies a power law 
with an exponent 1/2. That is, lim~_0(ln 2/ln e)= 1/2. 

KEY WORDS: Lyapunov exponent; product of random matrices; Markov 
chain. 

1. I N T R O D U C T I O N  

C o n s i d e r  a s e q u e n c e  {Xn} of  m a t r i x - v a l u e d ,  i n d e p e n d e n t ,  iden t ica l ly  dis-  

t r i b u t e d  r a n d o m  var iab les ,  whe re  

Xn = = A wi th  p r o b a b i l i t y  p 
0 

a n d  

( 2 +a(~) b(~) '~= 
X n =  c(e) l + a ( e ) J  B 

A a n d  B are  real ,  pos i t ive  m a t r i c e s  a n d  

l im a(e)  = l im c(e) = 0, 
e ~ 0  e - * 0  

with  p r o b a b i l i t y  1 - p 

a(~), c(~) >~ 0 -  l im b(e) = b o > 0 
~ 0  
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A is a parabolic matrix, while B is a hyperbolic matrix, which is a pertur- 
bation of the parabolic matrix 

('0 
It is easy to see that B has two distinct eigenvalues #1, #2, while A has a 
multiple eigenvalue # = 1. Let 

2(e) = lim 1 In IIX, X , _ I . . .  X1 It 
n ~ o o  n 

be the top Lyapunov exponent of the random matrix product. Existence of 
2 is guaranteed by well-known theorems about products of random 
matrices. (1) It is easily seen that 2 (0)=  0. In this paper I show that 

lim In 2(~) _ 1 
~ o  lne 2 

Random matrix products where matrices in the product are perturbations 
of a parabolic matrix arise in the study of planar billiard problems. (~) A 
power law scaling of the top Lyapunov exponent with an exponent of 1/2 
was proved for a large class of planar billiards in a recent paper by 
Wojtkowski. (3) Random matrix products of the type considered in the 
present paper (where the distribution of X1 is supported on an uncountable 
set of parabolic and hyperbolic matrices) arose in the study of a billiard in 
a gravitational field. A power law scaling of the top Lyapunov exponent 
with an exponent of 1/2 was established numerically by Lehtihet and 
Miller/4) Miller and Ravishankar (5) considered a stochastic model for the 
billiard in a gravitational field and showed that 2 scales like e ~, 1/2 ~< c~ ~< 1. 

I prove the scaling of the Lyapunov exponent by establishing upper 
and lower bounds which scale like e 1/2. A lower bound which scales like el/2 
can be obtained by using general results of Wojtkowski for products of 
random matrices. (5) I establish the lower bound using an elementary 
probabilistic argument, which I feel makes the result tranSparent for this 
particular problem. Results obtained in this paper can be easily extended to 
the case d =  d(e), l i m ~ o  d(e)> 0. One can further extend the result to the 
case when d < 0  and b, c < 0  by making the coordinate transformation 
x' = x, y'  = - y .  

2. S O M E  P R O P E R T I E S  OF A A N D  B 

Assume that a(e) = aoe + o(e) and c(~) = Coe + o(e), ~ > 0. [-If one 
assumes a ~ a o  e~ and c ~  Co e~, then the arguments given here will give a 
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scaling exponent of min(~, 7/2).] It is easy to see t h a t / ~  = (1 + a) - (bc) 1/2 
and #2 = (1 + a ) +  (be) v2 and the corresponding eigenvectors have slopes 
- ( c / b )  1/2 and (c/b)  1/2, respectively. The action of B on a ray in E2 (a 
straight line through the origin) is to rotate it toward the expanding direc- 
tion (eigendirection of #2) A rotates a ray in E2 in the clockwise direction 
The X axis is the eigendirection of A. From these observations it follows 
that the cone formed by the expanding direction and the X axis is left 
invariant by the actions of either matrix. Also note that as e ~ 0  the 
invariant cone collapes onto the X axis. Let us denote the slope of the 
expanding direction (c/b) m by mE. Let a be the invariant cone. Define a 
set of conical subsets of a as follows: 

For  a 2 x 2 matrix X define the norm I[" H o~ as 

IIXII~K=Sup{IXVI: gecrK, Igl = 1} 

where ]VI is the Euclidean norm of V. It is easy to see that there exist 
constants  KI, K2 > 0 such that 

IIAll~=Sup{lAVl: Vea ,  I Vt = 1}, [VI = 1} ~< 1 +K~e  1/2 

IIBII ~ ~< 1 + K2 ~1/2 

With a little more effort one can also establish that for every Ke N, there 
exist positive constants I~(K) and 12(K) such that 

IIAll~ ~> 1 + 11s 1/2,  IIBII~> 1 +/2s 1/2 (1) 

(we assume e < 1). 

2.1.  U p p e r  B o u n d  

We observe that for a.e. w (sequence of Xi) there exists an n(w)eN 
such that 

(X~X,_I . . .X1)Ve~r forall  V e E  2 (2) 

From this it follows that 

l l n  IIXNXN-1 " " X1 ]1 2 =  lim 
N ~ o O  2 V  

~< lim l l n  HXN...X,I] 
N ~ c x 3  J V  

~< p In IIA II ~#(1 - p) In llBII 
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for a.e.w. Therefore 

2 ~< p ln(1 + Kle  1/2) + (1 - p) ln(1 + K2~; 1/2) 

<~ pK1 el/2 + (1 - p ) Kz~ 1/2 = Cl ~ m (3) 

2.2. L o w e r  Bound 

From (1) it is clear that if a vector spends a positive fraction of time 
(asymptotically) in some cone aK, then the dilation of the vector as it 
moves under the action of {Xn } is large enough to obtain a lower bound of 
the form C2~ m. Note that as a vector gets close to the X axis, the dilations 
produced by both the A and B matrixes become smaller. Thus, the idea is 
to show that for a.e. w, the orbit of a vector stays away from the X axis. 

Consider the random variables {Zk} defined as follows: Z 0 =  Vo, 
where Vo is some vector in S ~ (the unit circle), 

X k Z k  1 

Zk= IX~Zk_xl' k =  1, 2, 3,... 

Clearly, Zk is an S~-valued random variable. Independence of {Xk) implies 
that {Zk} is a Markov sequence. Let v be a stationary initial measure for 
{Zk}. A theorem of Furstenberg and Kifer ~6) gives the following formula 
for 2: 

2 = Sup f dr(z) [p  In [Zzl + (1 - p) in [Bzl ] 

where the Sup is over the set of stationary initial distributions of {Zk}. Let 
v be a stationary distribution of {Zk} supported on a. Then 

2 >>. f, dv(z) [p  ln /Az[ + ( 1 - p ) l n  [Bz]] (4) 

From (1) it is clear that if we show that for some k ~ 1N, lim~ ~ o v(a~)> 0 
(both v and ak depend on e), we can obtain the desired lower bound. 

We coordinatize S 1 ~ a by using the slope m(V) of a vector V as its 
coordinate, 

m(V) c + (1 + a ) m ( V )  
m( A V) - 1 + dm( V) ' m( B V) - (1 + a ) + bm( V) 

d(m/me)  2 
A A = m(A V) - m(V)  = - m ~ - i  + mEd(m/mE) 

1 -- (m/me)  2 
A8 = m( B V) - m(V)  = m 2 

(1 + a )/b + m E(m/m ~) 

where m = m(v). 



Lyapunov Exponent of a Product of Random Matr ices 535 

Thus we obtain a Markov  chain {Qn} on [0, mE] where AA(m ) and 
AB(m) are the step sizes to the left and right starting from m. Define a 
Markov  chain {Yn} on [0, 1] by scaling {Q,} as follows: 

Yn = Q~/rn E 

Recall that me = (c/b) 1/2 = M(e)e 1/2, where lim~ 4o M(e) = (co/bo) m > 0. Let 

dM(*) M(~) 
L(e, X) = 1 + dM(~) X~ ~/2' R(e, X) - E1 + a(~)l/b(~) + M(~) Xe 1/2 

The transition probabil i ty for { Yn }, P(X, �9 ), can be written as 

P(X, �9 ) = pfx, (x- LX2,r, 1/2) 2f- (1 - -  p) 6x,(x+ R(A -- X2)e I/2) 

Let ~ be a s tat ionary initial distribution for {Y,}. If f is a bounded,  
measurable function on [0, 1], then ~ d r r ( x ) ( P f - f ) ( x ) = 0 ,  where 

Pf(x)  = f e(x,  dy) f ( y )  

Let f ( x )  = x; then 

f dzr(x) [ _ P f ( x ) - / ( x ) ]  = e 1/2 f. d~(x) {(1 - p)R  - [(1 - p)R  + pL] X 2 } 

Let 

g ( x )  = ~1/2{(1 - -  p )  R(~,  x ) -  [-(1 - -  p )  R(Fo, x )  At- pL(e, x ) ] x  2 } 

A simple computa t ion  shows that  if M ( e ) e < 4 ,  then g ' ( x ) < 0 ,  for all 
x ~ [0, t ]. Moreover ,  

g(0) > 0  and g ( 1 ) < 0  

Let 2(e) be the point  in [-0, 1] where g(x,e) crosses the X axis, 
lim~ ~ 0 s = x 0 = {(1 - p)Mobo/[(1 - p)Mobo + pdoMo] }1/2 

(E ~ 1) 
Therefore 

~, 1 /> Ig(l)l + NOV2) > 

822/54/1-2-35 
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From the definition of Yn, it is clear that there exists a stationary initial 
measure v for {Z,} such that 

Since lim~ ~ o x = Xo > 0,  l i m ,  ~ o ( Y / 2 )  > 1/K for some K e  IN. Thus, we have 
proved 

go( Xo/2 ) 
lira v(trK) > > 0 (6) 
~ o pdMo + go(Xo/2) 

Theorem. There exists a constant C 2 > 0  such that 2~> C2e 1/2 for 
small enough e. 

Proof. From (4) we have 

2 ~>~ dr(z) [ p l n  IAzl + ( l - p ) I n  {Bz[] 

>~ f~ dv(z) [ p l n  IAzl + ( 1 - p ) l n  [Bz[] 
K 

where tr,~ is as defined in (6). From (1) we have 

> f  dv(z)[pln(1-1-llel/2)+ (1 - p ) l n ( 1  +12el/2)] > C 2  el/2 for small enough 
K 

We have thus proved 

In 2(e) 1 
lim - -  - 
~ 0  lne 2 

3. C O N C L U D I N G  R E M A R K S  

There are two other interesting hyperbolic perturbations of a parabolic 
matrix: 

1. If one assumes that b(e) ~ 0 and c(e) ~ Co > 0, then the B matrix 
limits to a lower triangular matrix. In this case lim~ ~ o 2 > 0. 

2. If one assumes b(e) = bo~ + o(~), c(e) = Cot + o(e), and 
bo[co--*7>0, then by methods used in this paper one can show that 2 
scales like e as e ~ 0. 
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